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ABSTRACT: In a novel organocatalytic formal [3 + 2]
cycloaddition to afford chiral 2-oxazolidinones, an
enantioselectivity switch could be induced by changing
the manner of addition of the reactants, even when the
reaction components (cinchona-alkaloid-derived amino-
thiourea catalyst, substrates, and solvent) were the same.

Protein function can be altered by post-translational
modification or by genetic mutation as a result of chemical

damage or ionizing radiation. Post-translational modification of
biological catalysts, such as phosphorylation of enzymes like
Smurf11a or MEK,1b can dramatically alter the selectivity of the
enzyme and downstream biological events. In chemical
synthesis, asymmetric catalysts, especially biomimetic organo-
catalysts, may undergo similar functional switches in response
to environmental changes.2 For example, reversal of enantio-
selectivity by using a single chiral source has been accomplished
in several reactions simply by changing an achiral component
(e.g., the solvent) or using additional achiral additives.3,4

Chiral 2-oxazolidinones are important frameworks found in a
wide range of bioactive compounds5 and chiral auxiliaries for
asymmetric synthesis.6 We recently reported asymmetric formal
[3 + 2] cycloaddition reactions via intermediates generated in
situ from γ-hydroxy-α,β-unsaturated carbonyls with aldehydes
or imines (Scheme 1).7a−c In the presence of cinchona-alkaloid-
based aminothiourea catalysts (Figure 1),8 those intermediates
underwent intramolecular hetero-Michael addition with high
enantioselectivity to afford a diastereomeric mixture.7 Thus
inspired, we envisioned that reactions of an isocyanate with γ-
hydroxy-α,β-unsaturated carbonyl compounds could also be
carried out enantioselectively to furnish chiral 2-oxazolidinones
(Scheme 1).9 Moreover, the use of a heterocumulene as a
nitrogen source would circumvent the generation of diaster-
eomers, thereby allowing more effective enantioselective
amination of the β-carbon.
In the present study, we found that a slight change in the

reaction procedure led to a reversal of the enantioselectivity,
even when the chiral catalyst, substrates, and solvent used were
unaltered. Herein we present a novel asymmetric reaction to
afford 2-oxazolidinones in which a procedure-controlled
enantioselectivity switch was observed when using a single
cinchona-alkaloid-derived organocatalyst. To the best of our
knowledge, there has been no previous report of such an
inversion behavior that requires no change in the reaction
components.

We initially carried out the cycloaddition of (E)-4-hydroxy-1-
phenylbut-2-en-1-one (1a) and 4-methylbenzenesulfonyl iso-
cyanate (2) using 5 mol % cinchonidine-derived catalyst 4a
(Scheme 2). The reaction was effected by mixing the starting
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Scheme 1. Formal [3 + 2] Cycloaddition via Asymmetric
Intramolecular Hetero-Michael Addition by Aminothiourea
Catalysts

Figure 1. Cinchona-alkaloid-derived aminothiourea catalysts.

Scheme 2. Effect of the Amount of Isocyanate 2 in the
Formal [3 + 2] Cycloaddition of 1a with 2
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materials and the catalyst in one portion in toluene at 0 °C. The
addition of 1.0 equiv of 2 resulted in the formation of the (R)-
2-oxazolidinone (R)-3a in an enantiomeric ratio (er) of 70:30,
while the use of 1.5 equiv of 2 afforded (S)-3a with an er of
26:74.
To gain insight into the unusual effect of an excess amount of

the isocyanate on the stereoselectivity, spectroscopic studies
were carried out. 1H NMR analysis of a solution of 2 and 4a in
toluene-d8 indicated that the signals associated with the protons
adjacent to the quinuclidine nitrogen of 4a were shifted
downfield in the presence of 2 [Figure S1 in the Supporting
Information (SI)]. In addition, 13C NMR analysis of the
solution revealed the disappearance of the sp carbon of 2 in the
presence of 4a (Figure S2). Furthermore, high-resolution mass
spectrometry analysis of a solution of 2 and 4a (20:1 mixture)
detected their 1:1 adduct (found, m/z 762.2000; calcd for [M +
H]+, 762.2002) but not oligomeric n:1 adducts (n > 1) (see
Scheme S1 in the SI for details). These results strongly
suggested that 4a was mutated by 2 to form a zwitterionic 1:1
adduct by addition of the quinuclidine nitrogen of 4a to 2
(Figure 2),10 which had a significant influence on the

stereoselectivity. Thus, we modified the reaction procedure as
follows: 1a (1.01 equiv) was first treated with 2 (1.0 equiv)
until the latter was completely consumed, generating the
carbamate intermediate; subsequently, 4a (5 mol %) was added
(Scheme 3, procedure A).11,12 This sequential protocol yielded
(R)-3a with improved enantioselectivity.13 In contrast, when 4a
(5 mol %) was mutated by treatment with 2 (1.0 equiv) before

the addition of 1.01 equiv of 1a (Scheme 3, procedure B), the
opposite enantiomer, (S)-3a, was obtained selectively.14 We
carried out the aforementioned reaction protocols in the
presence of catalysts derived from other readily available
cinchona alkaloids (Table 1)15 and found that all of them led to
reversal of the enantioselectivity.

With the established procedures and conditions using 4a as a
single catalyst, we next explored the substrate scope (Table
2).16 Reversal of enantioselectivity was observed in all of the
reactions with γ-hydroxy-α,β-unsaturated ketones 1a−h (Table
2, entries 1−16). Both electron-rich and electron-deficient
substrates were tolerated under the employed reaction
conditions (entries 3−6). A substrate bearing a p-bromo
group also selectively afforded both enantiomers of the 2-
oxazolidinone product (entries 7 and 8). In addition, enones
bearing bulky biphenyl and naphthyl groups yielded the
corresponding products with high enantioselectivity (entries
9−12), and a heterocycle-substituted substrate also allowed for
the enantiodivergent synthesis (entries 13 and 14). An aliphatic
ketone could also be used in the reaction (entries 15 and 16),
although the enantioselectivity with procedure A (entry 15)
was modest in comparison with that in other cases. However, in
the reaction using a γ-hydroxy-α,β-unsaturated ester, the same
2-oxazolidinone enantiomer was obtained as the major product
in both procedures, and higher enantioselectivity was observed
with procedure B (Table 2, entries 17 and 18).
To demonstrate the utility of the products as valuable

synthetic intermediates, transformations of (R)-3a with high
optical purity obtained after one-time recrystallization were
carried out. The tosyl group of 3a could be removed by
treatment with sodium naphthalenide to afford 5 without
significant loss of optical purity (Scheme 4). In addition,
treatment of (R)-3a with lithium hydroxide and hydrogen
peroxide gave optically active 1,2-amino alcohol 6 (Scheme 5).
Thus, the proposed 2-oxazolidinone synthesis protocol and
transformation methods would constitute a facile, practical
enantiodivergent route to optically active 2-oxazolidinones and
chiral 1,2-amino alcohols. The absolute configuration of 5 was

Figure 2. Proposed structure of the catalyst mutated by 2.

Scheme 3. Enantioselectivity Switch in the Formal [3 + 2]
Cycloaddition Using Sequential Protocols

Table 1. Investigation of the Enantioselectivity Switch with
Cinchona-Alkaloid-Based Catalysts 4a

procedure A procedure B

entry catalyst yield (%)b er yield (%)b er

1 4a 47 88.5:11.5 (R) 69 13:87 (S)
2 4b 75 79:21 (R) 57 20:80 (S)
3 4c 53 26:74 (S) 50 83:17 (R)
4 4d 61 20.5:79.5 (S) 46 82:18 (R)

aReactions were run using 1a (0.253 mmol), 2 (0.25 mmol), and the
catalyst (0.0125 mmol) in toluene. bIsolated yields.
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determined by comparing its optical rotation with the literature
value17 (see the SI for details), and the configurations of all
other products were assigned analogously.
In summary, we have presented a novel enantioselective

route to 2-oxazolidinones via formal [3 + 2] cycloadditions
between γ-hydroxy-α,β-unsaturated carbonyls and an isocya-
nate in the presence of a cinchona-alkaloid-derived amino-
thiourea catalyst. Notably, the two enantiomers could be
synthesized selectively without changing the reaction compo-
nents (chiral catalyst, substrates, and solvent). The absolute

configurations of the products were controlled only by the
employed reaction procedure. The proposed reaction protocols
are particularly valuable for catalysts derived from chiral natural
products, including cinchona alkaloids, since these compounds
are available in only one enantiomeric form. Studies to clarify
the enantioselectivity switch in further detail and the
application of this methodology to other asymmetric reactions
are currently underway in our laboratory, and the results will be
reported in due course.
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